Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
1.
Acta sci., Biol. sci ; 41: e46622, 20190000. map, graf, tab
Article in English | LILACS, VETINDEX | ID: biblio-1460878

ABSTRACT

For the first time, the anti-hemolytic activity and the enzyme inhibitory activities of Dalbergia ecastaphyllum leaves extracts were tested against α-amylase, α-glucosidase, lipase, acetylcholinesterase, butyrylcholinesterase, tyrosinase and hyaluronidase. The phenolic profile of the obtained extracts was also investigated by high-performance liquid chromatography with photodiode array detection (HPLC-PAD). The extracts showed inhibitory activity against all enzymes evaluated, with the highest inhibitory activity reported for the enzyme hyaluronidase (28.28 ± 2.43 to 72.19 ± 1.40 μg mL-1). The obtained extracts also demonstrate anti-hemolytic activity (52.22 ± 1.62 to 71.17 ± 1.82%). Among the phenolic compounds identified, protocatechuic, vanillic and β-resorcylic acids were the most abundant (1.13 ± 0.06 to 2.53 ± 0.06, 0.90 ± 0.06 to 2.19 ± 0.06 and 1.03 ± 1.62 to 22.11 ± 1.62 mg L-1, respectively). In the statistical analysis, a significant correlation was found between the flavonoids content and all enzymes inhibitory activities. The present study showed that D. ecastaphyllum leaves extracts may have the potential to be used in the therapeutic treatment of several diseases such as Alzheimer, Parkinson, type 2 diabetes mellitus, hyperglycemia, and pigmentation, as well as those associated with oxidative stress.


Subject(s)
Dalbergia/chemistry , Neurodegenerative Diseases/metabolism , Metabolic Syndrome , Oxidative Stress , In Vitro Techniques
2.
Arq. neuropsiquiatr ; 76(10): 705-712, Oct. 2018. tab, graf
Article in English | LILACS | ID: biblio-973920

ABSTRACT

ABSTRACT Protein misfolding diseases are usually associated with deposits of single "key" proteins that somehow drive the pathology; β-amyloid and hyperphosphorylated tau accumulate in Alzheimer's disease, α-synuclein in Parkinson's disease, or abnormal prion protein (PrPTSE) in transmissible spongiform encephalopathies (TSEs or prion diseases). However, in some diseases more than two proteins accumulate in the same brain. These diseases might be considered "complex" proteinopathies. We have studied models of TSEs (to explore deposits of PrPTSE and of "secondary proteins") infecting different strains and doses of TSE agent, factors that control incubation period, duration of illness and histopathology. Model TSEs allowed us to investigate whether different features of histopathology are independent of PrPTSE or appear as a secondary result of PrPTSE. Better understanding the complex proteinopathies may help to explain the wide spectrum of degenerative diseases and why some overlap clinically and histopathologically. These studies might also improve diagnosis and eventually even suggest new treatments for human neurodegenerative diseases.


RESUMEN La acumulación de proteínas con conformación anormal es observada en numerosas enfermedades degenerativas del sistema nervioso. Tales enfermedades están generalmente asociadas con el depósito de una proteína que es importante para la patogenia de la enfermedad; amiloide-β e hiperfosforilación de tau en la Enfermedad de Alzheimer, α-sinucleína en la Enfermedad de Parkinson, y acúmulo de proteína prion anormal (PrPTSE) en las encefalopatías espongiformes transmisibles (EET). Sin embargo, en algunas enfermedades más de dos proteínas se acumulan en el sistema nervioso central. Estas enfermedades pueden considerarse "proteinopatías complejas". Hemos estudiado varios modelos de EET para analizar los depósitos de PrPTSE y la posible acumulación de otras proteínas (que podríamos llamar "proteínas secundarias"). La relación entre proteínas mal plegadas y neurodegeneración no es claro. La mayor parte de las enfermedades neurodegenerativas evolucionan por décadas; por lo tanto los acúmulos proteicos podrían generar diferentes efectos patogénicos en los diferentes estadios de la enfermedad. Alternativamente los acúmulos proteicos podrían ser el resultado de alteraciones del sistema nervioso y no su causa. Dado que la etiología de las ETT es relativamente bien conocido y es atribuido a infección por agentes autoreplicantes que generan malformacion de la proteína prion normal (la isoforma patologica, PrPTSE, propuesta como el agente infeccioso) hemos estudiado varios modelos animales, cepas de agente infectante y dosis del agente causal de ETT. Estos factores controlan el período de incubación, duración de la enfermedad e histopatología. Los modelos animales estudiados nos han permitido investigar si las diferentes características histopatológicas son independientes de PrPTSE o podrían ser secundarias a la acumulación de la misma. Un mejor conocimiento de las proteinopatías complejas podría ayudar a analizar el espectro de enfermedades degenerativas y a su vez, investigar el motivo de la superposición clínico-patológico en algunas de ellas. Estos estudios podrían ayudar en el diagnóstico y eventualmente sugerir nuevas posibles terapéuticas para las enfermedades neurodegenerativas humanas.


Subject(s)
Humans , Animals , Prion Diseases/physiopathology , Neurodegenerative Diseases/physiopathology , Prion Diseases/metabolism , Neurodegenerative Diseases/metabolism , Disease Models, Animal , Proteostasis Deficiencies/physiopathology , Proteostasis Deficiencies/metabolism
3.
Rev. méd. Chile ; 141(4): 495-505, abr. 2013. ilus
Article in Spanish | LILACS | ID: lil-680473

ABSTRACT

Misfolding and aggregation of proteins are the main features of a group of diseases termed Protein Misfolding Disorders (PMDs). PMDs include Alzheimer's disease and Transmissible Spongiform Encephalopathies, among many others. The deposition of protein aggregates is the main responsible for tissue damage and the consequent clinical signs generated in such disorders. In this review, we will focus in the role of protein aggregates in these diseases and in the putative mechanisms by which they exert their toxicity.


Subject(s)
Humans , Neurodegenerative Diseases , Proteostasis Deficiencies , Neurodegenerative Diseases/genetics , Neurodegenerative Diseases/metabolism , Neurodegenerative Diseases/physiopathology , Proteostasis Deficiencies/genetics , Proteostasis Deficiencies/metabolism , Proteostasis Deficiencies/physiopathology
4.
Experimental & Molecular Medicine ; : 89-98, 2012.
Article in English | WPRIM | ID: wpr-93421

ABSTRACT

Autophagy is a dynamic cellular pathway involved in the turnover of proteins, protein complexes, and organelles through lysosomal degradation. The integrity of postmitotic neurons is heavily dependent on high basal autophagy compared to non-neuronal cells as misfolded proteins and damaged organelles cannot be diluted through cell division. Moreover, neurons contain the specialized structures for intercellular communication, such as axons, dendrites and synapses, which require the reciprocal transport of proteins, organelles and autophagosomes over significant distances from the soma. Defects in autophagy affect the intercellular communication and subsequently, contributing to neurodegeneration. The presence of abnormal autophagic activity is frequently observed in selective neuronal populations afflicted in common neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease, Huntington's disease and amyotrophic lateral sclerosis. These observations have provoked controversy regarding whether the increase in autophagosomes observed in the degenerating neurons play a protective role or instead contribute to pathogenic neuronal cell death. It is still unknown what factors may determine whether active autophagy is beneficial or pathogenic during neurodegeneration. In this review, we consider both the normal and pathophysiological roles of neuronal autophagy and its potential therapeutic implications for common neurodegenerative diseases.


Subject(s)
Animals , Humans , Alzheimer Disease/metabolism , Autophagy/physiology , Huntington Disease/metabolism , Models, Biological , Neurodegenerative Diseases/metabolism , Neurons/cytology , Parkinson Disease/metabolism
5.
Experimental & Molecular Medicine ; : 69-72, 2012.
Article in English | WPRIM | ID: wpr-39017

ABSTRACT

The process of macroautophagy (referred to hereafter as autophagy), is generally characterized by the prominent formation of autophagic vesicles in the cytoplasm. In the past decades, studies of autophagy have been vastly expanded. As an essential process to maintain cellular homeostasis and functions, autophagy is responsible for the lysosome-mediated degradation of damaged proteins and organelles, and thus misregulation of autophagy can result in a variety of pathological conditions in human beings. Although our understanding of regulatory pathways that control autophagy is still limited, an increasing number of studies have shed light on the importance of autophagy in a wide range of physiological processes and human diseases. The goal of the reviews in the current issue is to provide a general overview of current knowledge on autophagy. The machinery and regulation of autophagy were outlined with special attention to its role in diabetes, neurodegenerative disorders, infectious diseases and cancer.


Subject(s)
Humans , Autophagy/physiology , Communicable Diseases/metabolism , Diabetes Mellitus/metabolism , Models, Biological , Neurodegenerative Diseases/metabolism
6.
Braz. j. med. biol. res ; 44(11): 1088-1096, Nov. 2011. ilus
Article in English | LILACS | ID: lil-604278

ABSTRACT

The transient receptor potential channels family (TRP channels) is a relatively new group of cation channels that modulate a large range of physiological mechanisms. In the nervous system, the functions of TRP channels have been associated with thermosensation, pain transduction, neurotransmitter release, and redox signaling, among others. However, they have also been extensively correlated with the pathogenesis of several innate and acquired diseases. On the other hand, the omega-3 polyunsaturated fatty acids (n-3 fatty acids) have also been associated with several processes that seem to counterbalance or to contribute to the function of several TRPs. In this short review, we discuss some of the remarkable new findings in this field. We also review the possible roles played by n-3 fatty acids in cell signaling that can both control or be controlled by TRP channels in neurodegenerative processes, as well as both the direct and indirect actions of n-3 fatty acids on TRP channels.


Subject(s)
Animals , Humans , /physiology , Neurodegenerative Diseases/metabolism , Oxidative Stress/physiology , Transient Receptor Potential Channels/physiology , Calcium/metabolism , Cell Death/physiology , Intracellular Space/physiology , Signal Transduction/physiology
7.
Indian J Biochem Biophys ; 2011 Apr; 48(2): 73-81
Article in English | IMSEAR | ID: sea-135303

ABSTRACT

Peroxisome proliferator-activated receptors (PPARs) belong to the nuclear receptor superfamily. PPAR-alpha is involved in wound healing, stimulation of lipid and folic acid catabolism, inflammation control, inhibition of ureagenesis and peroxisome proliferation. The PPAR/ is involved wound healing, cell proliferation, embryo implantation, adipocyte differentiation, myelination alteration and apoptosis. The PPAR is involved in fat, lipid and calorie utilization, sugar control, inflammation control and macrophage (MQ) matutation. Homocysteine (Hcy) binds to nuclear peroxisome proliferator activated receptor. Increase in PPAR expression decreases the level of nitrotyrosine and increases endothelial nitric oxide concentration, decreases metalloproteinase activity and expression as well as elastinolysis and reverses Hcy-mediated vascular dysfunction. The PPAR initially recognized as a regulator of adipocyte development has become a potential therapeutic target for the treatment of diverse disorders. In addition, the activation of PPAR receptor ameliorates neurodegenerative disease. This review focuses on the recent knowledge of PPAR in neuroprotection and deals with the mechanism of neuroprotection of central nervous system disorder by PPAR.


Subject(s)
Animals , Brain Ischemia/metabolism , Brain Ischemia/pathology , Brain Ischemia/therapy , Cell Death , Central Nervous System/cytology , Central Nervous System/metabolism , Central Nervous System/pathology , Cytoprotection , Humans , Neurodegenerative Diseases/metabolism , Neurodegenerative Diseases/pathology , Neurodegenerative Diseases/therapy , Neurons/cytology , Neurons/pathology , Neuroprotective Agents/metabolism , PPAR gamma/metabolism
8.
Medicina (B.Aires) ; 70(2): 105-119, Apr. 2010. ilus, graf, tab
Article in English | LILACS | ID: lil-633729

ABSTRACT

Between the 1950s and 1980s, scientists were focusing mostly on how the genetic code is transcribed to RNA and translated to proteins, but how proteins are degraded has remained a neglected research area. With the discovery of the lysosome by Christian de Duve it was assumed that cellular proteins are degraded within this organelle. Yet, several independent lines of experimental evidence strongly suggested that intracellular proteolysis is largely non-lysosomal, but the mechanisms involved remained obscure. The discovery of the ubiquitin-proteasome system resolved the enigma. We now recognize that degradation of intracellular proteins is involved in regulation of a broad array of cellular processes, such as cell cycle and division, regulation of transcription factors, and assurance of the cellular quality control. Not surprisingly, aberrations in the system have been implicated in the pathogenesis of human disease, such as malignancies and neurodegenerative disorders, which led subsequently to an increasing effort to develop mechanism-based drugs.


Entre los años 1950 y 1980 los científicos focalizaron sus estudios sobre la forma en que el código genético es transcripto al ARN y traducido a las proteínas, dejando de lado la forma en que éstas se degradan. Con el descubrimiento de los lisosomas por Christian de Duve se asumió que las proteínas se degradaban en el interior de esa organela. Sin embargo, varias líneas de trabajo independientes sugerían fuertemente que la proteólisis intracelular era en su mayor parte no lisosómica, aunque se desconocían sus mecanismos. El descubrimiento del sistema ubiquitina-proteosoma resolvió el enigma. Ahora sabemos que la degradación intracelular de proteínas participa en la regulación de un amplio espectro de procesos celulares como la división y el ciclo celular, la regulación de los factores de transcripción y el control de la calidad celular. No es sorpresa entonces que las aberraciones del sistema estén relacionadas con la patogénesis de enfermedades humanas como tumores y desórdenes neurodegenerativos, lo que llevó luego a un esfuerzo para desarrollar drogas basadas en este mecanismo.


Subject(s)
Humans , Intracellular Space/metabolism , Lysosomes/metabolism , Proteasome Endopeptidase Complex/metabolism , Proteins/metabolism , Ubiquitin/metabolism , Drug Delivery Systems , Dietary Proteins/metabolism , Neoplasms/metabolism , Neurodegenerative Diseases/metabolism , Protein Transport
9.
Rev. chil. nutr ; 35(supl.1): 250-260, nov. 2008. ilus
Article in Spanish | LILACS | ID: lil-523024

ABSTRACT

Alzheimer's disease (AD) is a major public health problem in many countries of the world; however the specific cause of this disease is still unknown. Currently, a bulk of evidence supports the hypothesis that beta-amiloidpeptide could be the cause of synaptic injuries and neuronal death observed at the initial stages of the disease. Patients with AD show lower levels of docosahexaenoic acid (DHA, C22:6; omega-3) in plasma and brain tissue, as compared with age-matched controls. In addition, epidemiological studies indicate that a high intake of DHA may have protective properties against neurodegenerative diseases. These observations are supported by in vivo studies showing that diets rich in DHA reduce synaptic injuries and cognitive defects induced by the beta-amyloid peptide. Although the molecular basis of these neuroprotective effects are still unknown, a number of mechanisms have been proposed to explain this protection, such as: regulation in the expression of potentially protective genes, activation of anti-inflammatory pathways, and modulation of the functional properties of neuronal membranes along with changes in their structural characteristics and physical-chemical properties. The present work reviews and discusses the molecular basis of the hypothesis on the protective role of DHA in the prevention of AD.


La enfermedad de Alzheimer (EA) constituye un importante problema de salud pública en muchos países del mundo, sin embargo la causa específica de esta enfermedad todavía es desconocida. Actualmente, numerosas evidencias apoyan la hipótesis que modificaciones del péptido beta-amiloide podrían ser la causa más próxima de las lesiones sinápticas y muerte neuronal que ocurren en las etapas iniciales de la enfermedad. Los pacientes con EA muestran niveles más bajos de ácido docosahexaenoico (DHA, C22: 6; omega-3) en plasma y tejido cerebral, en comparación con controles pareados por edad. Además, los estudios epidemiológicos indican que una alta ingesta de DHA podría tener propiedades protectoras contraías enfermedades neurodegenerativas. Estas observaciones se sustentan por estudios in vivo que demuestran que las dietas ricas en DHA, limitan las lesiones sinápticas y disminuyen los defectos cognitivos inducidos por el péptido beta-amiloide. Aunque las bases moleculares de estos efectos neuroprotectores aún siguen siendo desconocidas, se han propuesto varios mecanismos, tales como: la regulación de la expresión de genes potencialmente protectores, la activación de vías antiinflamatorias, la modulación de las propiedades funcionales de las membranas neuronales, junto con cambios en las características estructurales y físico-químicas de las mismas. Este trabajo revisa y discute el fundamento molecular de estas hipótesis sobre el rol del DHA en la protección de la EA.


Subject(s)
Humans , Diet , Docosahexaenoic Acids , Alzheimer Disease/prevention & control , Docosahexaenoic Acids , Alzheimer Disease/metabolism , Neurodegenerative Diseases/metabolism , Neurodegenerative Diseases/prevention & control , Inflammation , Oxidative Stress , Amyloid beta-Peptides/metabolism , Central Nervous System/metabolism
10.
Yonsei Medical Journal ; : 701-703, 2007.
Article in English | WPRIM | ID: wpr-96524

ABSTRACT

Adult polyglucosan body disease (APBD) is a rare neurological disease, characterized by adult onset (fifth to seventh decades), progressive sensorimotor or pure motor peripheral neuropathy, upper motor neuron symptoms, neurogenic bladder, and cognitive impairment. APBD is confirmed by a sural nerve biopsy that shows the widespread presence of polyglucosan bodies in the nerve. We report a 70 year old male patient who exhibited progressive weakness in all extremities and dementia. His electrodiagnostic studies showed sensorimotor polyneuropathy and muscle pathology that consisted of polyglucosan bodies located in small peripheral nerves. This is the first case of APBD reported in Korea.


Subject(s)
Aged , Humans , Male , Biopsy , Glucans/metabolism , Inclusion Bodies , Neurodegenerative Diseases/metabolism
11.
Rev. chil. cienc. méd. biol ; 16(1): 30-38, 2006.
Article in Spanish | LILACS | ID: lil-452441

ABSTRACT

Las patologías neurodegenerativas corresponden a un grupo heterogéneo de desordenes caracterizados por cambios moleculares que desencadenan alteraciones morfológicas, asociadas a modificaciones de la conducta y disminución progresiva de la capacidad cognitiva. El notable avance en el esclarecimiento de los mecanismos moleculares implicados en la neurodegeneración, ha demostrado que existen alteraciones importantes en diversos mecanismos de transducción de señales como consecuencia de neurotoxicidad, injuria oxidativa y alteraciones moleculares en genes que codifican para proteínas claves en los mecanismos fisiológicos de aprendizaje, memoria y plasticidad neuronal. La comprensión de la fisiología y fisiopatología de estas vías de señalización, ejemplificada en la enfermedad de Alzheimer, permitiría enfocar de mejor manera el estudio de estas patologías y la búsqueda de un tratamiento efectivo para combatir estos desordenes cada vez más frecuentes debido al aumento de las expectativas de vida de la población.


Subject(s)
Humans , Alzheimer Disease/physiopathology , Alzheimer Disease/metabolism , Neurodegenerative Diseases/physiopathology , Neurodegenerative Diseases/metabolism , Signal Transduction , Apoptosis , Intercellular Signaling Peptides and Proteins/metabolism , Receptors, Cell Surface/metabolism
12.
Saudi Medical Journal. 2006; 27 (9): 1302-1305
in English | IMEMR | ID: emr-80919

ABSTRACT

Some heat shock proteins HSPs, act as molecular chaperones. These and other molecular chaperones that are not HSPs, function in a variety of protein biosynthetic event and protect proteins from the deleterious effects of stressors by stabilizing, and refolding proteins. They assist protein folding, assembly, transport and degradation. Several human diseases such as neurodegeneration, cancer, aging, retinal dystrophy, and inflammation arise from defects HSPs and protein folding. This review demonstrates the chaperones such as properties of HSPs in cellular processes and their implication in different kind of human diseases


Subject(s)
Humans , Molecular Chaperones/physiology , Disease/etiology , Brain/physiopathology , Neoplasms/metabolism , Neurodegenerative Diseases/metabolism , Autoimmune Diseases/metabolism , Cardiovascular Diseases/metabolism
13.
RBCF, Rev. bras. ciênc. farm. (Impr.) ; 37(2): 159-164, maio-ago. 2001. tab
Article in Portuguese | LILACS | ID: lil-314039

ABSTRACT

Os efeitos benéficos do extrato padronizado de Ginkgo bilola (EGb 761) em doenças neurodegenerativas parecem estar relacionados com alterações da circulação cerebral e/ou com sua atividade antioxidante. Porém, os mecanismos envolvidos nestas atividades não estão completamente estabelecidos. Neste trabalho avaliou-se a atividade das enzimas catalase, superóxido dismutase e gulationa peroxidase nas estruturas cerebrais hipocampo, estriado e substância negra de ratos tratados com EGb e verificou-se a ação do extrato sobre a lipoperoxidação em hipocampo. Não houve alteração na atividade da glutationa peroxidase nas estruturas avaliadas. Todavia, os resultados demonstraram aumento significativo na atividade da...


Subject(s)
Animals , Rats , Antioxidants , Enzyme Activation/immunology , Neurodegenerative Diseases/immunology , Neurodegenerative Diseases/metabolism , Ginkgo biloba , Evaluation Study , Indicators and Reagents , Specimen Handling , Spectrophotometry
14.
Rev. bras. neurol ; 36(1): 11-25, jan.-fev. 2000. tab, graf
Article in Portuguese | LILACS | ID: lil-277440

ABSTRACT

A técnica de espectroscopia de prótons (1H) por ressonância magnética do cérebro permite identificar, in vivo e de modo näo-invasivo, neurometabolitos pertencentes a diversas vias do metabolismo intermediário. A análise desses achados é o objetivo da presente revisäo. As bases do método e os principais metabolitos que constituem o espectro säo considerados, assim como as vias neuroquímicas relacionadas com importantes funçöes metabólicas e os neurometabolitos representativos das mesmas, possíveis de serem observados no espectro em condiçöes normais e patológicas. O conhecimento dessas relaçöes aponta para aspectos neuroquímicos da amostra de tecido nervoso examinada e permite hipóteses fisiológicas e fisiopatológicas relativas às variaçöes dos principais metabolitos. Säo descritas variaçöes regionais e em relaçäo ao envelhecimento normal, importantes na seleçäo e comparaçäo de amostras adequadamente pareadas, sobretudo em situaçäo de pesquisa. A aplicaçäo da técnica no diagnóstico em neurologia também é considerada, com ênfase em doenças degenerativas. Conclui-se ser uma técnica de grande utilidade clínica e que contribui de modo significativo no aprofundamento disgnóstico, assim como na monitorizaçäo terapêutica e no acompanhamento evolutivo de doenças neurológicas


Subject(s)
Humans , Cerebrum/metabolism , Nervous System Diseases/metabolism , Neurodegenerative Diseases/metabolism , Magnetic Resonance Spectroscopy , Neurochemistry , Aging/metabolism , Choline/metabolism , Phosphatidylinositols/metabolism , Inositol/metabolism , Neurotransmitter Agents/metabolism , Phosphatidylcholines/metabolism
16.
Rev. psiquiatr. clín. (São Paulo) ; 25(2): 98-103, 1998. ilus, tab
Article in Portuguese | LILACS | ID: lil-225836

ABSTRACT

A apolipoproteina E (apo E), com funcao no metabolismo de lipideos e transporte de colesterol, tem sido associada tambem a patogenese da doenca de Alzheimer (DA). Este estudo teve como objetivo identificar os genotipos para apo E e a frequencia de seus alelos em individuos com DA tipo tardio (grupo 1) ou sem sintomas de demencia neurodegenerativa (grupo 2). Foram estudados 32 individuos assim distribuidos: grupo 1 = 18 pacientes com idades de 66 a 82 anos (media = 71 anos); grupo 2 = 14 individuos de 65 a 78 anos (media = 69 anos). O DNA foi extraido de leucocitos com amplificacao do segmento de interesse do gene para apo E por PCR (polymerase chain reaction) e submetido a clivagem com enzima Hha I. As frequencias dos alelos nos grupos 1 e 2 foram: 3 - 0,75 e 0,79 (p=0,699), 4 - 0,25 e 0,07 (p=0,035), respectivamente...


Subject(s)
Humans , Male , Female , Aged , Apolipoproteins E/metabolism , Alzheimer Disease/metabolism , Polymorphism, Genetic/physiology , Aged , Polymerase Chain Reaction , Dementia/diagnosis , Dementia/metabolism , Genotype , Gene Amplification , Alzheimer Disease/genetics , Neurodegenerative Diseases/diagnosis , Neurodegenerative Diseases/metabolism , Neuropsychological Tests
SELECTION OF CITATIONS
SEARCH DETAIL